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Overview

e Objective: Numerically simulate plasmas confined by slowly
evolving magnetic fields.

® Requires closed system of equations with general treatment of
parallel dynamics.

® “General” implies as much physics as possible.
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Collisional or collisionless transport?

e Nature of parallel transport in vicinity of magnetic island varies.
Collisional near X-points: kv /v — 0.

Moderately collisional inside island: kjv;,/v > 1
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Figure 1: Perturbed heat flow contours due to a 2/1 magnetic island.

e Closures should allow for arbitrary collisionality.



(General — Intractable?

e Model requirements for quantitative parallel closures.

1. Relevant electron and ion kinetic equations

Drift kinetic equations (DKE)

2. Good collision operator
Lorentz scattering with nonlocal restoring terms

3. Free-streaming and time-dependent physics
Integration involving characteristics.

e Closures must also be numerically tractable.

1. Time spent calculating closures ~ time for nonlinear step.

2. Closures must be robust, numerically stable.



Take Chapman-Enskog-like (CEL) approach.

e Write f as the sum of Maxwellian, fj;, and kinetic distortion,
F:

2

exp

m(v — ‘7)2
2T (Z, t)

f:fM+F:n(f,t)l + F,

e Why 5-moment CEL approach?
1. Keeps fluid and kinetic physics separate.

2. V and T (or p) readily available in most plasma fluid codes.
3. Density does not appear directly as drive.

4. Fewer fluid equations.

WARNING: 5-moment approach is less messy but requires
better solution of kinetic equation.

e Write but do not solve full CEL kinetic equation:
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Gyroaverage kinetic equations and define
parallel closure moments.

e Gyroaverage full kinetic equations, order out drift effects and
ignore remaining annoying terms (nonlinearities, parallel drift
terms, etc...).
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where { = v /v, Py, P; and P, are Legendre polynomials, and
b-V -1 =b-V-m (bb— (1/3)) = (2/3)V)m.

e Define collision operator.
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e Define parallel closures.
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Homogeneous solution written in terms of
characteristics.

e Write homogeneous solution in terms of Legendre polynomials
and characteristics, 7+ = (L/v) F t.
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where a; and ki are constants and Vs(v) = g Ve (V).

Figure 2: Sample characteristics along which homogeneous solution is constant.



Integration along characteristics captures
nonlocal effects.

e Inhomogeneous solution shows nonlocal dependence on fluid
and closure moments.
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Figure 3: Integrals along ¢ = ¢’ + (L’ — L)/v connect characteristics when evaluating F at
(v,t', L').



Closures take form of singular Fredholm
integral equations.

e Taking moments yields coupled system of integral equations.
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e Solution exists in limit of zero mode frequency and sinusoidal
perturbations in T' and V).



Heat Aux closure approximate for arbitrary
collisionality.
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Figure 4: Temperature-driven heat flux for homogeneous magnetic field and sinusoidal temperature
perturbations.
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Parallel viscous stress approximate for
arbitrary collisionality.
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Figure 5: Flow-driven parallel viscous stress for homogeneous magnetic field and sinusoidal parallel

flow perturbations.
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Understanding electron heat confinement in
RFP’s requires nonlocal heat flux closure.

e Field line diffusivity causes x, to greatly exceed predictions of
classical transport.
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Nonlocal heat flux closure predicts heat How
against local gradients.
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Figure 6: In a small subset of cases heat flows against local gradients for the superimposed axisym-
metric temperature profile.
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Sales Pitch and Shortcomings

e General parallel closures promise novel physics from simula-
tions of plasmas confined by slowly evolving magnetic fields.

e Outstanding issues exist.

1. Incorporation of drift effects for electromagnetic, neoclassi-
cal closures.

2. Inclusion of trapped particle effects in tori of arbitrary as-
pect ratio and shaping.

3. Implementation of fully time-dependent solution desirable
but difficult.

4. Numerical performance still unknown.
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